

BAULKHAM HILLS HIGH SCHOOL

TRIAL 2013 YEAR 12 TASK 4

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 180 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-16
- Marks may be deducted for careless or badly arranged work
- All the diagrams are not to scale

Total marks – 100 Exam consists of 10 pages. This paper consists of TWO sections.

<u>Section 1</u> – Page 2 and 3 (10 marks) Questions 1-10

- Attempt Question 1-10
- Allow about 15 minutes for this section

Section II – Pages 4-9 (90 marks)

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Table of Standard Integrals is on page 10

Section I - 10 marks Use the multiple choice answer sheet for question 1-10 Allow about 15 minutes for this section.			
1.	Evaluate to three significant figures $\frac{4.67 \times \sin 28^{\circ}}{\sqrt{4.6 \times 10^{6}}}$ (A) 1.02 (B) 0.06 (C) 2.89 × 10 ⁷ (D) 1.02 × 10 ⁻³		
2.	The value of the limit $\lim_{x \to 10} \frac{x^2 - 100}{x - 10}$ (A) undefined (B) 0 (C) 8 (D) 20		
3.	Solve the equation $2x - 5 = \frac{x+3}{2}$ (A) $x = \frac{-7}{3}$ (B) $x = \frac{-2}{3}$ (C) $x = \frac{8}{3}$ (D) $x = \frac{13}{3}$		
4.	The first term of an arithmetic progression is 3, and eleventh term is 23. The n^{th} term is (A) $T_n = 3 + 23(n - 1)$ (B) $T_n = 23 + 10(n - 1)$ (C) $T_n = 3 + 2(n - 1)$ (D) $T_n = 3 + 10(n - 1)$		
5.	Given that $\cos x = 0.5$ and $0^{\circ} < x < 90^{\circ}$, which of the following has the greatest value? (A) $\cos^2 x$ (B) $\sin x$ (C) $\tan x$ (D) 0.75		

6.	Given that $f(x) = x^2 + x$, find the values of <i>b</i> for which $f''(b) = f(b)$ (A) $b = 2$ and 1
	(B) $b = -1$ and 2
	(C) $b = -2$ and -1
	(b) $b = -2$ and 1
7.	If $\log_{10} 7 = a$ then $\log_{10} \left(\frac{1}{70}\right)$ is equal to
	(A) $-(1+a)$
	(B) $(1+a)^{-1}$
	(C) $\frac{a}{10}$
	10
	(D) $\frac{1}{10a}$
8.	The number of animals P on an island, at time t is given by $P = 7000e^{-kt}$, where k is a positive constant. Over time the number of animals on the island is
	(A) increasing exponentially.
	(B) decreasing exponentially.
	(C) increasing at a constant rate
	(D) decreasing at a constant rate
9.	If $z = 1 - y^3$ and $y = 1 - x$, then $z =$
	(A) $x^3 + 3x^2 + 3x$
	(B) $x^3 - 3x^2 + 3x$
	(C) $x^3 - 3x^2 - 3x$
	(D) $x^3 + 3x^2 - 3x$
10	Interest rates are increasing at an decreasing rate. Which of the following graphs represents
10.	the above statement.
	(A) (B) '↑
	\longleftrightarrow t
	(C) (D)
	$ \underset{t}{ \longleftrightarrow } $
	End of Section I

Section II – Extended Response Attempt questions 11-16. Allow about 2 hours and 45 minutes for this section. Answer each question on a SEPARATE PAGE. Clearly indicate question number. Each piece of paper must show your BOS#. In Question 11-16, your responses should include relevant mathematical reasoning and/or calculation

Que	Question 11 (15 marks)		
a)	Solve for x $\frac{x+6}{2} \le x$	2	
b)	Express $\frac{3+\sqrt{2}}{6+\sqrt{2}}$ with rational denominator.	2	
c)	Factorise $3x^2 - 48y^2$	2	
d)	Solve for x 2x - 5 = 3	2	
e)	Find the value of k for which $(k - 2)x^2 - 2kx - 1 = 0$ has real and distinct roots.	3	
f)	If α and β are the roots of $2x^2 - 3x + 6 = 0$ then write the value of : (i) $\alpha + \beta$ (ii) $\alpha\beta$ (iii) $(2 + \alpha)(2 + \beta)$	1 1 2	
	End of Question 11		

Question 12 (15 marks)

a) A bush walker walks from Point A on a bearing of 030° for 2.4km to Point B. He changes direction at B to a bearing of 145° to avoid a swamp and follows this course for 3.6km to Point C.

- (i) Copy the diagram in your booklet and mark on it all the given information.
- (ii) Calculate the distance from Point A to Point C (to one decimal place).

2

2

2

2

(iii) What is the bearing of Point C from Point A?

b) Differentiate the following functions with respect to *x*

(i) $\cos^2 3x$ (ii) $\ln\left(\frac{1-x}{1+x}\right)$

d)

(i)	Show that the equation through A(-3, 4) and B(1, -2) is $3x + 2y + 1 = 0$.	1
(ii)	Find the perpendicular distance from $C(0, -3)$ to the line AB.	2
(iii)	Hence find the area of $\triangle ABC$.	2
Find the v	value of $\tan x$ when $\tan^2 x + \sec^2 x = 9$	2

End of Question 12

Que	Question 13 (15 marks)		
a)	Find (i) $\int \frac{2}{3x} - e^{-3x} dx$	2	
	(ii) $\int_0^{\frac{\pi}{6}} \sec^2 2x dx$	2	
b)	Find the equation of the tangent to the curve $y = 3 \sin \frac{x}{2}$ at $x = \frac{3\pi}{2}$	3	
c)	For the function $y = x^3 - 6x^2 + 9x + 1$ find the (i) Stationary points and determine their nature. (ii) Coordinates of any point of inflexion. (iii) Hence sketch the curve for $-1 \le x \le 5$	3 2 3	
	End of Question 13		

Question 16 (15 marks) Marks Kelvin borrows \$200 000 from his bank. Interest is compounded monthly at 0.425% per a) month. A_n is the amount owed after *n* payments, \$M is the amount of the monthly instalments and the loan is repaid after n months. Show that $A_2 = 200\ 000(1.00425)^2 - M(1.00425) - M$ 1 (i) Show that the monthly repayment, M is given by (ii) 3 $M = \frac{200\ 000(1.00425)^n(0.00425)}{1\ 00425^n - 1}$ 1 Find the amount of the monthly instalments if Kelvin agrees to repay the loan (iii) over 30 years. 1 (iv) How much will Kelvin pay in total after 30 years? 2 If Kelvin instead decided to pay monthly instalment of \$1331 from the beginning (v) of the loan, how long will he take to repay the loan? If $\sin x \neq \pm 1$ show that b) $1 + \sin^2 x + \sin^4 x + \sin^6 x + \dots = \sec^2 x$ 2 If *r* is the radius of the cone show that $r^2 = 2hR - h^2$ (i) 1 c) Show that volume of the cone that can be inscribed in a sphere of radius R (ii) is given by 1 $V = \frac{1}{3}\pi(2h^2R - h^3)$ where *h* is the height of the inscribed cone. h R Show that the volume of the largest cone is $\frac{8}{27}$ of the volume of the sphere. (ii) 3 **End of Exam**

STANDARD INTEGRALS

 $=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, if n < 0$ $\int x^n dx$ $\int \frac{1}{x} dx$ $= \ln x, \qquad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$ $\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$ $\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$ $\int \frac{1}{\sqrt{2^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$ NOTE: $\ln x = \log_e x, x > 0$

Zriz Irial 2013 Havanie

$$\begin{array}{c} \underline{M\cdot c} \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} D & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q2} & \underline{Q3} D & \underline{Q4} C & \underline{QS} c \\ \underline{QI} D & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{QI} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{QI} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q1} \\ \underline{Q1} & \underline{Q$$

b)
$$y = 3 \tan \frac{1}{2} \tan \frac{1}{2}$$

 $y = 3 \tan \frac{1}{2} \tan \frac{1}{2}$
 $y = 3 \tan \frac{1}{2} \tan \frac{1}{2}$
 $y = 3 \tan \frac{1}{2} \tan \frac{1}{2} = \frac{1}{2\pi}$
 $y = 3 \tan \frac{1}{2} \tan \frac{1}{2} = \frac{1}{2\pi}$
 $y = 3 \tan \frac{1}{2} \tan \frac{1}{2} = \frac{1}{2\pi}$
 $y = \frac{1}{2} \tan \frac{1}{2} - \frac{1}{2\pi}$
 $y = \frac{1}{2\pi} - \frac{1}{2\pi}$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15)$
 $(1, -15$

(iii)

$$\begin{aligned}
\begin{aligned}
(JU) \ blan \ \dot{x} = 0 \\
\frac{1}{5} + (u - t) = 0 \\
+ = 0 \ or 4 \\
time = 4 \ min. -D
\end{aligned}$$
(ii)

$$\begin{aligned}
Iii \ vexis = \frac{u}{5} + -\frac{1}{5} + \frac{1}{2} \\
\frac{dv}{dt} = \frac{u}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \\
\frac{d^{2}v}{dt} = -\frac{2}{5} \\
\frac{$$

د

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1$$

3) Is bitten R is the vardius q sphere q.h the height
$$R^{2}$$

q inactified Grae.
 $OD = R = 0 - 0R = h - R$
 $B = 0^{2} = 00^{2} = 00^{2}$
 $V^{2} = h^{-} (L - R)^{2} = (kR - h^{2})$
 $V^{2} = h^{-} (L - R)^{2} = (kR - h^{2})$
 $V = h^{-} (L - R)^{2} = (kR - h^{2})$
 $V = h^{-} (L - R)^{2} = (kR - h^{2})$
 $V = \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T (\frac{32 - R^{2}}{2T} - \frac{6 + R^{2}}{2T})$
 $= \frac{1}{3} T R^{2}$
 $V + Q + \frac{1}{3} T R^{2}$
 $V + Q + \frac{1}{3} T R^{2}$
 $= \frac{32 - T R^{2}}{2}$
 $= \frac{1}{3} T R^{2}$
 $= \frac{1}{3} T (\frac{1}{3} R^{2})$
 $= \frac{1}{3} T R^{2}$
 $= \frac{1}{3} T (\frac{1}{3} R^{2})$
 $= \frac{1}{3} T R^{2}$
 $= \frac{1}{3} T (\frac{1}{3} R^{$